ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

II. Freezing Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A. Definition and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B. Freezing Point Measurements and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C. Prediction Models of Initial Freezing Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

III. Ice Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A. Ice Content, Freezable Water, and Unfreezable Water . . . . . . . . . . . . . . . . . . 107

B. Prediction Models of Ice Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

IV. Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A. Enthalpy and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B. Prediction Models of Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

V. Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A. Specific Heat and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B. Prediction Models of Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

VI. Latent Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VII. Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A. Definition of Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B. Thermal Conductivity Measurement and Data . . . . . . . . . . . . . . . . . . . . . . . . 115

C. Prediction Models of Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VIII. Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

IX. Thermal Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

X. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Thermophysical properties control thermal energy transport, energy storage, and phase transform-

ations in food materials. Thermophysical properties of frozen foods are used to estimate the rate of

heat transfer and to calculate the heat load in processes such as freezing and thawing. In early cal-

culations and analyses associated with freezing and thawing, constant and uniform thermophysical

properties were primarily used. Those calculations and analyses were typically oversimplified and

inaccurate. Numerical analyses such as finite element and finite difference methods begun to be

used widely to analyze thermal food processes. Modern numerical analysis can account for nonuni-

form and varying thermophysical properties, which change with time, temperature, and location

during food processing. The benefits of modern numerical analyses increase the demand for more

accurate thermophysical properties of frozen foods.