ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

II. The Scaling Theories and Interfacial Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 133

III. Transitions and Self-Consistent Fields Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 136

IV. Hyperelasticity Phenomenology and Reinforcement . . . . . . . . . . . . . . . . . . . . . . . 138

V. Theories of Rubber Reinforcement — A Brief Review of the Previous Work . . . . . 140

VI. The Unsolved Problems and Some Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

VII. The Theory of Rubber Reinforcement — A Novel Approach . . . . . . . . . . . . . . . . . 144

A. General Phenomenological Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

1. Qualitative Description of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

2. Fractal Geometry, Thermodynamics, and Conformational Statistics . . . . . 148

3. Quantum Mechanics and the Basic Statements of Conclusions . . . . . . . . . 149

B. Definition of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

1. Definition of the System and its Transitions . . . . . . . . . . . . . . . . . . . . . . . 150

2. Probability Current and Network Response . . . . . . . . . . . . . . . . . . . . . . . 152

3. An Engineering Approach and Scaling Transitions . . . . . . . . . . . . . . . . . . 153

C. Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

VIII. Experimental Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

IX. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Polymer networks, in general sense, are of the unique molecular type, extending in size (and structure)

from micro-to macroworld [1-8]. In very simplified terms, characteristic dimensions of a polymer

network, following the same constitutive relations, can be extended, from nano-to kilometers, that

is, for a dozen of magnitudes in space scale. In principle, one can expect that using such properties

can bridge over, and connect in synergetic way, properties of some entities from nano-to macro-

scale. But, in the common approach to polymers (and polymer-type carbon networks) this way of

thinking is still very rare. On the other side, some issues obviously related to structure parameters

on both, nano-and macroscale, stay unsolved in spite of the great efforts and investments, extensive

research, and large pool of accumulated data, for a very long time. Such a problem is the reinforce-

ment of rubbers with active fillers. Although based on some obvious phenomena, following from

the fundamental principles (as the interactions due to uncompensated forces at a surface of nano-

particles, making the architecture of active fillers), quantification of that influence on properties of

materials, on macroscale, is not yet possible [2-4].