ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A. Matrix Reaction Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B. Reaction System with Several Steady States . . . . . . . . . . . . . . . . . . . . . . . . . . 193

II. Oscillatory Chemical Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A. Linear and Nonlinear Reaction Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B. Multistability and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

III. Bray-Liebhafsky Oscillatory Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A. Mechanism of the Bray-Liebhafsky Reaction . . . . . . . . . . . . . . . . . . . . . . . . 199

B. Phenomenological Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

IV. Examinations of Catalysts Using the Bray-Liebhafsky Reaction

as the Matrix System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A. Examinations in the Closed Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

1. The Influence of the Amount of Catalysts on the Hydrogen

Peroxide Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

2. The Influence of the Interaction between Catalysts and

Hydrogen Peroxide before Initiation of Hydrogen Peroxide

Decomposition in the Bray-Liebhafsky System . . . . . . . . . . . . . . . . . . . . 204

B. Examinations in the Open Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

One of the most known physical chemists Wilhelm Ostwald defined catalyst as a substance that

participates in a particular chemical reaction and thereby increases its rate but without a net

change in the amount of that substance in the system [1-3]. Hereinafter catalyst will referred as

the common name for both, catalyst and inhibitor, where inhibitor has an opposite role decreasing

the rate of chemical reaction. Having such important function in chemical kinetics and different

applications, catalysts are the permanent subjects of scientific investigations. These investigations

contain discovering of new catalysts, determining their physicochemical characteristics, and

examinations of their influence on particular reactions. By the interaction between catalyst and

reaction system, the control of considered process, as well as the characteristics of catalyst, can

be analyzed in parallel. If our aim is the investigation of catalyst characteristics, the selection of

reaction system as a matrix for its examination is of great importance. Therefore, we discussed

in the following the different reaction systems including their main characteristics important for

mentioned investigations (Sections I.A and I.B) with particular attention on oscillatory reactions

in general (Section II) and Bray-Liebhafsky [4,5] in particular (Section III). In Section IV, the

characterization of the catalysts by means of the Bray-Liebhafsky oscillatory reaction as the

matrix system will be presented.