ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

A. Electroviscosity-Electroviscoelasticity of Liquid-Liquid Interfaces . . . . . . . . 371

B. Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

II. Theory: Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

A. Electrified Interfaces: A New Constitutive Model of Liquids . . . . . . . . . . . . . 373

1. Classical Assumptions for Interfacial Tension Structure and for

Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

2. Postulated Assumptions for an Electrical Analog . . . . . . . . . . . . . . . . . . . 377

III. Theory of Electroviscoelasticity: Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

A. Tension Tensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

B. van der Pol Derivative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

C. van der Pol Derivative Model: Fractional Approach . . . . . . . . . . . . . . . . . . . . 383

1. Fundamentals of Fractional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

2. Example of Analog Realization of a Fractional Element . . . . . . . . . . . . . . 384

3. Solution of the Representative Linear Model . . . . . . . . . . . . . . . . . . . . . . 385

4. Solution of the Representative Nonlinear Model . . . . . . . . . . . . . . . . . . . 388

a. Numerical Methods for Nonlinear Equations . . . . . . . . . . . . . . . . . . . 390

IV. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Electroviscosity and electroviscoelasticity are terms that may be dealing with fluid flow effects on

physical, chemical, and biochemical processes. The hydrodynamic or electrodynamic motion is

considered in the presence of both potential (elastic forces) and nonpotential (resistance forces)

fields. The elastic forces are gravitational, buoyancy, and electrostatic or electrodynamic

(Lorentz), and the resistance forces are continuum resistance or viscosity and electrical resistance

or impedance.