ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

A. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

B. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

C. Pore Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

D. Capillary Condensation in Pores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

II. Possible Features and Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

III. Mass Transfer in Pellets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

A. Approximate Calculations of the Effect of Capillary Condensation . . . . . . . . . 607

B. Transport Phenomena inside Catalyst Particle . . . . . . . . . . . . . . . . . . . . . . . . 610

1. Types of Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

2. Diffusion and Flow in Surface Adsorbed and Capillary

Condensed Adsorbate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

C. Estimation Using Fick’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

D. Mass Transfer Calculations Using Dusty Gas Model . . . . . . . . . . . . . . . . . . . 616

IV. Reaction Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

V. Transient Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

A. Flow Rate Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

B. Temperature Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

C. Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

VI. Catalyst Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

VII. Capillary Condensation in Industrial Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

VIII. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Solid heterogeneous catalysts are typical finely dispersed systems. Depending on the manufacturing

method, the porous structure of catalyst grain is formed by numerous microparticles or nano-

particles bound together. The diameter of these particles varies from a few nanometers to

hundred nanometer. For example, mixed hydroxide or carbonate catalysts are normally prepared by

precipitation, leading to a final crystallite size of 3-15 nm in the precipitated catalyst [1]. The void

space between particles in the catalyst represents the pore-structure, where active centers such as

metal nanoparticles are located. Such a structure can be random (irregular), which is typical for

most porous catalysts, or well-ordered, that is characteristic for zeolites.