ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

II. Polyhedrical Nanocapsules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

III. Rounded Concentric Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

IV. Formation Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

V. Purification and Biological Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844

VI. Nuclear Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

Carbon nanocapsules [1-3] are polyhedrical shell structures that comprise several closed con-

centric graphene layers and a kernel. They have dimensions of the order of 50 nm and can have

an interior gap between kernel and capsule. Filled nanocapsules were first identified in arc dis-

charge experiments at very high temperatures by the simultaneous evaporation of graphite electro-

des charged with rare earth elements. Several types of nanocapsules with different compounds

inside have been already synthesized [4]. The polyhedrical capsules with up to 40 shells have inter-

layer spacings greater than in graphite and have chemical inertness similar as graphite. Rounded

vertex or spherical capsules are formed when pairs of carbon atoms are eliminated from the

shells of polyhedrical nanocapsules or multiwall nanotubes [5], and in this case interlayer spacings

can be smaller than in graphite. Different synthetic routes and purification methods are being

explored to overcome low production yields [6].