ABSTRACT

Ö ( Ù , Ú , × ) = è 1( Ù ) è 2(

Ú ) è 3( × ), the equation in question has

more sophisticated solutions in the product form Ö ( Ù , Ú , × ) = é ( Ù , × ) ê ( Ú , × ),

heat Õ

considered in Subsection 1.1.1. 2 ç . Suppose

=

Ö ( Ù , Ú , × ) is a solution of the heat equation. Then the functions Ö

+ Ý 2, â 2 × + Ý 3),

2 = Ü Ö ( Ù cos ì − Ú sin ì + Ý 1,

sin ì + Ú

cos ì + Ý 2, ×

+ Ý 3), Ö

+ Æ

( â 21 + â 22) ×màíÖ ( Ù + 2

+ Ý 1, Ú

+ 2 Æ

+ Ý 2, ×

+ Ý 3), Ö

+ ì × exp ã −

ì ( Ù 2 + Ú 2) 4 Æ

+ ì × ,

, â

− ì

= 1,

where Ü , Ý 1, Ý 2, Ý 3, ì , î

, â , â 1 and â 2 are arbitrary constants, are also solutions of this equation. The signs at â ’s in the formula for

1 are taken arbitrarily, independently of each other. Î"Ï

3 ç . For all two-dimensional boundary value problems discussed in Subsection 2.1.1, the Green’s function can be represented in the product form

ð ( Ù , Ú , ñ , ò , × ) = ð 1( Ù

, ñ ,

, ò ,

× ), where

, ñ ,

× ) and ð 2( Ú

, ò ,

× ) are the Green’s functions of the corresponding one-dimensional boundary value problems (these functions are specified in Subsections 1.1.1 and 1.1.2).