ABSTRACT

Recently there have been significant advances in the fabrication and demonstration of individual molecular electronic wires and diode switches. This chapter reviews those developments and shows how demonstrated molecular devices might be combined to design molecular-scale electronic digital computer logic. The design for the demonstrated rectifying molecular diode switches is refined and made more compatible with the demonstrated wires through the introduction of intramolecular dopant groups chemically bonded to modified molecular wires. Quantum mechanical calculations are performed to characterize some of the electrical properties of the proposed molecular diode switches. Explicit structural designs are displayed for AND, OR, and XOR gates that are built from molecular wires and molecular diode switches. The diode-based molecular electronic logic gates are combined to produce a design for a molecular-scale electronic half adder and a molecular-scale electronic full adder. These designs correspond to conductive monomolecular circuit structures that would be one million times smaller in area than the corresponding micron-scale digital logic circuits fabricated on conventional solid-state semiconductor computer chips. It appears likely that these nanometer-scale molecular electronic logic circuits could be fabricated and tested in the foreseeable future. At the very least, such molecular circuit designs constitute an exploration of the ultimate limits of electronic computer circuit miniaturization.