ABSTRACT

In all geotechnical engineering problems, performance prediction requires determination of the properties of the soil or rock mass under consideration, and their appropriate use employing soil mechanics theories. For the determination of the soil properties to be used in design, geotechnical engineers can follow two, often complementary, approaches: obtain soil samples from the field and subsequently perform laboratory tests on these samples, or make use of

in situ

tests

. Laboratory tests are performed under well-defined and controlled boundary and testing conditions

(e.g., drainage, stress path, strain rate) and have the benefits of isolating specific engineering properties. However, their use is limited by the variable and often not completely understood effects of sample disturbance and by generally long testing times and high costs. In addition, because testing involves relatively small specimens, extrapolation of the measured properties to the entire site is often challenging.