ABSTRACT

Why is it important to simulate the electrical and molecular behavior of individual neurons and small neural networks? There are several answers to this question: (1) To prove that how they work is truly understood. (2) To predict neural behavior not yet seen in nature by altering ionic conductances in membranes with models of drug action. (3) To verify connectivity structures in small biological neural networks that exhibit unique firing behavior (e.g., two-phase bursting). (4) To model CNS functions (on a greatly reduced scale) such as the motor control of eye movements, the detection of objects by electric fish, or a basic learning behavior. Biological neural networks (BNNs), such as in the retina or cochlear nucleus, are too complex and nonlinear to permit their neurophysiological behavior to be predicted from anatomy alone. Neuroanatomists have the tools to identify the neurotransmitters in synapses, and enough neuropharmacology is known to identify whether a given synapse is

excitatory

or

inhibitory,

fast or slow, and what ions are gated, etc. Such details can be inserted in the detailed, conductance-based dynamic models to approach verisimilitude.