ABSTRACT

The construction of a suspension bridge is a massive undertaking. Architects and engineers who work as bridge builders are expected to safely span immense distances using a minimum of building materials and construction time. If these builders were required to recreate all of the necessary mechanical principles each time they approached such a project the construction of bridges would be prohibitively expensive in money, time, and risk of span failure because of oversight or error. Fortunately, people engaged in the construction industry can draw on a vast repository of physical properties, building techniques, and project examples collected over thousands of years in support of their efforts. Our hypothetical bridge architect can draw inspiration from such magnificent examples as the Golden Gate Bridge in San Francisco, the George Washington Bridge in New York, the Akashi Kaikyo Bridge in Japan, the Great Belt East in Denmark, the Tacoma Narrows Bridge in Washington State,1 and other examples of the bridge builder’s art. More, an architect can draw on the mathematical constructs and materials science that describe the properties of the materials and construction techniques used to create a new structure. Project management, supplier scheduling, material manufacture, and other aspects of the construction effort, are all supported by previous examples providing guidelines for the overall project development.