ABSTRACT

Conjugated Quantum Dots ................................................................. 298 12.3 Micro-Nano Topographies that Guide Axons In Vitro and In Vivo ................................ 299

12.3.1 Topographical Cues for Regenerating Nerves: Natural Fibers ........................... 299 12.3.1.1 Self-Assembling Peptide Nanofibers .................................................. 299 12.3.1.2 Silk Fibers to Enhance Nerve Regeneration ...................................... 300 12.3.1.3 Magnetically Aligned Nanofibers for Cell Alignment ....................... 300

12.3.2 Biosynthetic and Synthetic Fibers ....................................................................... 300 12.3.2.1 Fabrication through Electrospinning .................................................. 301 12.3.2.2 Synthetic Electrospun Fibers for Neural Tissue Engineering ............ 301 12.3.2.3 Biosynthetic Fibers with Conductive Properties ................................ 302 12.3.2.4 Biosynthetic Fibers to Aid in Schwann Cell Migration..................... 302 12.3.2.5 Topography for Controlled Migration of Schwann Cells .................. 302

12.4 Nanoelectrode Arrays and Their Coatings to Understand Electrical and Biochemical Function and Improve Tissue Integration.............................................. 302 12.4.1 NEAs to Evaluate Neural Networks.................................................................... 303

12.4.1.1 NEAs Provide Information on the Organization of the Nervous System ....................................................................... 303

12.4.1.2 Carbon Nanotube-Based Arrays......................................................... 303 12.4.2 Nanoscale Electrode Coatings ............................................................................. 304

12.4.2.1 Electrostatic Layer-by-Layer-Based Coatings .................................... 304 12.4.2.2 iCVD Coatings ................................................................................... 305 12.4.2.3 Using Nanoscale Nitrocellulose to Incorporate

Anti-Inflammatory Drugs ................................................................... 305 12.5 Nanoparticles for the Controlled Release of Trophic Factors

in the Nervous System....................................................................................................... 305 12.5.1 Nanoparticles for the Release of Anti-Inflammatory Drugs................................ 306 12.5.2 Nanoparticles for Release of Antiscarring Drugs................................................ 306

12.5.3 Nanoparticles for Neuroprotection ...................................................................... 306 12.6 Future Outlook ................................................................................................................... 307 Acknowledgments......................................................................................................................... 307 References ..................................................................................................................................... 307

Biological systems are created from hierarchical structures assembled from nanoscale building blocks. These nanoscale components are assembled to form macroscale structures with specific shape and function. Nanotechnology provides a new tool to fabricate, measure, probe, and interface with these biological systems at the atomic and molecular levels, typically ranging from 1 to 100 nm. This capacity affords precise control over a number of physical and functional properties that are unique to specific applications [1], including mechanical, physical, chemical, and electrical properties of materials. Potentially, materials created using nanotechnology have size scales and properties engineered to interact in controlled ways with their biological counterparts, ultimately leading to enhanced biocompatibility and functionality [2].