Dynamic mechanical analysis (DMA) is becoming more and more commonly seen in the analytical laboratory as a tool rather than a research curiosity. This technique is still treated with reluctance and unease, probably due to its importation from the field of rheology. Rheology, the study of the deformation and flow of materials, has a reputation of requiring a fair degree of mathematical sophistication. Although many rheologists may disagree with this assessment,1 most chemists have neither the time nor the inclination to delve through enough literature to become fluent. Neither do they have an interest in developing the constituent equations that are a large part of the literature. DMA is a technique that does not require a lot of specialized training to use for material characterization. It supplies information about major transitions as well as secondary and tertiary transitions not readily identifiable by other methods. It also allows characterization of bulk properties directly affecting material performance.