ABSTRACT

Analysis ............................................................................................ 518 9.3 Automation Approaches ............................................................................... 519

9.3.1 Fluidic Methods ................................................................................ 519 9.3.2 Robotic Methods ............................................................................... 522

9.4 Automated Fluidic Radiochemical Separations ........................................... 523 9.4.1 Development of Automated Fluidic Separation Approaches ........... 523 9.4.2 Fission Products ................................................................................ 525

9.4.2.1 Technetium ......................................................................... 525 9.4.2.2 Strontium............................................................................ 532

9.4.3 Actinides ........................................................................................... 538 9.4.3.1 TRU-Resin Separations ..................................................... 539 9.4.3.2 UTEVA-Resin Separations ................................................ 545 9.4.3.3 TEVA-Resin Separations ................................................... 547

9.5 Automated Process Monitoring .................................................................... 549 9.6 Discussion ..................................................................................................... 551

Acknowledgments .................................................................................................. 553 References .............................................................................................................. 554

Radiochemical analysis, complete with the separation of radionuclides of interest from the sample matrix and from other interfering radionuclides, is often an essential step in the determination of the radiochemical composition of a nuclear sample or process stream. Although some radionuclides can be determined nondestructively by gamma spectroscopy, where the gamma rays penetrate signicant distances in condensed media and the gamma ray energies are diagnostic for specic radionuclides, other radionuclides that may be of interest emit only α or β particles. For these, samples must be taken for destructive analysis and radiochemical separations are required. However, even for gamma-emitting radionuclides, purication or concentration to a smaller volume in the range of a detector may be desirable and advantageous to facilitate detection and to provide better selectivity by reducing spectral complexity and interferences.