ABSTRACT

Microfluidics-based biochips, also referred to as lab-on-a-chip, are revolutionizing many areas of biochemistry and biomedical sciences. Typical applications include enzymatic analysis (e.g., lactate assays), DNA sequencing, immunoassays, proteomic analysis, blood chemistry for clinical diagnostics, and environmental toxicity monitoring [1-3]. These devices enable the precise control of microliter and nanoliter volumes of biological samples. They combine electronics with biology, and they integrate various bioassay operations such as sample preparation, analysis, separation, and detection [1,4]. Compared to conventional laboratory experiment procedures, which are usually cumbersome and expensive, these miniaturized and automated biochip devices offer a number of advantages such as higher sensitivity, lower cost due to smaller sample and reagent volumes, higher levels of system integration, and less likelihood of human error.