Breadcrumbs Section. Click here to navigate to respective pages.
Chapter

Chapter
THE UNIQUENESS OF VISCOSITY SOLUTIONS
DOI link for THE UNIQUENESS OF VISCOSITY SOLUTIONS
THE UNIQUENESS OF VISCOSITY SOLUTIONS book
THE UNIQUENESS OF VISCOSITY SOLUTIONS
DOI link for THE UNIQUENESS OF VISCOSITY SOLUTIONS
THE UNIQUENESS OF VISCOSITY SOLUTIONS book
ABSTRACT
LEM M A 4.1. Defining A r = {(*, y ) E R 2n \ \ x ~ y \ < r}_then there exist 0 < r0 < 1 and for each e > 0 a continuous function w€: [0;7] x Aro -> [0; + °°) which is Lipschitz continuous and differentiable at each point o f [0;7] x Aro and satisfies
w«(t, x , y ) + H(x, w^(t , X , y)) - H (y , - w ey(t, x, y)) > 0 for (t, x, y) E [0 ;n x A,#,
ivs(i, x, x) < e for x E R n ; wf(x, y, r) > ^ for (t , x, y) E [0;7] X 2Aro
and
lim inf Iw^O, x, y); I x - y I a: r} = + for 0 < r < r0.