ABSTRACT

Plastic garbage bags, medical implants, textile fibers, bulletproof vests-these are just a few of the diverse applications of modern polymeric materials [1]. This breadth of applicability is possible because of the wide range of properties these substances can exhibit. Although the ubiquity of polymers has largely resulted from the development of synthetic materials, natural macromolecules (cellulose and derivatives and natural fibers, such as wool and silk) also continue to be important. Polymers, which are composed of one or more repeating subunits called monomers, belong to a wide variety of chemical classes: hydrocarbons, esters, amides, ethers, and others. The chemical identity and stereochemical configuration of the long polymer molecules govern the intra-and interchain interactions that ultimately lead to the bulk properties that suit the material to a specific use [2,3].