ABSTRACT

Polyethylene resins, with their wide range of physical properties, find outlets in an extensive array of manufactured goods. The key to the adaptability of polyethylene lies in its tunable semicrystalline morphology, which can be controlled by manipulating molecular and processing variables. Toughness, hardness, clarity, and other physical characteristics can be regulated by altering average molecular weight, comonomer type, and comonomer content. Resins suited to most commercial thermoplastic fabrication processes can be created by controlling average molecular weight, molecular weight distribution, and branching characteristics. Manipulation of the material prior to and during crystallization provides another way of influencing ultimate properties. Polyethylene resins can thus be adapted to many end uses by virtue of both their physical properties and processing their characteristics. From an economic standpoint, the generally low price of polyethylene resins can give them a competitive edge compared to other materials (both polymeric and nonpolymeric) that adequately meet the desired end use requirements.