ABSTRACT

During the last few decades, one of the major advances in chromatography has been the development and commercialization of automated chromatographic instruments. The output of retention data per unit of time has been considerably increased, and the evaluation of large data matrices, containing large amounts of chromatographic information (i.e., retention parameters of a homologous or nonhomologous series of solutes, measured on various stationary and mobile phases), is no longer possible without the application of high-speed computers and a wide variety of chemometric techniques. These methods allow the simultaneous evaluation of an almost unlimited amount of data, highly facilitating the clarification of both practical and theoretical problems. These chemometric procedures have been extensively employed in chromatography for the identification of the basic factors influencing retention and separation; for the comparison of various stationary and mobile phases; for the assessment of the relationship between molecular structure and retention behavior (quantitative structure-retention relationship, QSRR); for the elucidation of correlations between retention behavior and biological activity; etc. As each chemometric procedure generally highlights only one, or only a few features of the chromatographic problem under analysis, the concurrent application of more than one technique is rather a rule than an exception.