ABSTRACT

Supersymmetry is a symmetry that relates a fermion to a boson, so any representation of a supermultiplet must contain both fermions and bosons and all particles will have their supersymmetric counterparts which are called the superpartners. A fermion will have scalar superpartners (usually called sfermions, e.g., the scalar superpartner of the quarks are called squarks) while a scalar or a vector will have fermionic superpartner (usually the superpartner of a boson is referred to as bosino, e.g., Higgsino and gauginos are fermionic superpartners of Higgs bosons and gauge bosons respectively). The electron and its scalar superpartner, the selectron, will belong to the same supermultiplet. In a supersymmetric theory, all interactions will have their supersymmetric counterterms, obtained by interchanging particles↔ superparticles. However, because we have not observed any superparticles so far, supersymmetry must be a broken symmetry and the superparticles will have masses of the order of supersymmetry breaking scale, if they exist.