ABSTRACT

A solid oxide fuel cell (SOFC) is an electrochemical device to convert the chemical energy of fuels, such as hydrogen and hydrocarbons, to electricity, with potential applications in transportation, distributed generation, remote power, defense, and many others [1-3]. They offer extremely high chemical-to-electrical conversion efficiencies because the efficiency is not limited by the Carnot

5.1 Introduction .......................................................................................................................... 155 5.2 Chemical Deposition Methods ............................................................................................. 157

5.2.1 Chemical Vapor Deposition and Atomic Layer Deposition ..................................... 157 5.2.2 Electrochemical Vapor Deposition ........................................................................... 158

5.3 Physical Deposition Techniques ........................................................................................... 159 5.3.1 Magnetron Sputtering Techniques ............................................................................ 159 5.3.2 Pulse Laser Deposition ............................................................................................. 162 5.3.3 Plasma Spray Deposition .......................................................................................... 164

5.4 Colloidal and Ceramic Powder Techniques .......................................................................... 167 5.4.1 Colloidal Techniques ................................................................................................ 167

5.4.1.1 Slurry-Coating, Spin-Coating, and Dip-Coating Methods ........................ 167 5.4.1.2 Sol-Gel Method .......................................................................................... 169 5.4.1.3 Screen-Printing Method ............................................................................. 170 5.4.1.4 Electrophoretic Deposition ........................................................................ 171

5.4.2 Ceramic Powder Techniques .................................................................................... 173 5.4.2.1 Tape-Casting and Freeze-Tape-Casting Processes .................................... 173 5.4.2.2 Tape-Calendering Process ......................................................................... 175 5.4.2.3 Dry-Pressing Method ................................................................................. 175

5.5 Flame-Assisted Colloidal Process ........................................................................................ 176 5.5.1 Spray Pyrolysis and Flame-Assisted Vapor Deposition ........................................... 176 5.5.2 Electrostatic Spray Deposition.................................................................................. 178

5.6 Lithography and Etching Techniques for μ-SOFCs ............................................................. 179 5.7 Concluding Remarks ............................................................................................................ 180 Abbreviations ................................................................................................................................. 181 References ...................................................................................................................................... 182

cycle of a heat engine. Further energy efficiency can be achieved when the produced heat is used in combined heat and power, or gas turbine applications. Furthermore, the greenhouse gas emission from an SOFC is much lower than that from conventional power generation technologies. Due to its high operating temperature, an SOFC has a high tolerance to typical catalyst poisons, produces high-quality heat for reforming of hydrocarbons, and offers the possibility of direct utilization of hydrocarbon fuels.