ABSTRACT

Up to a point, the quantum theory developed in Chapter 5 was quite general. However, the systems we had in mind were non-relativistic ones consisting of a xed number of particles. In this chapter, we extend the theory to deal with systems in which the number of particles can change. There are several reasons for wanting to do this. The most obvious is that we need a method of describing high-energy scattering and decay processes in which particles can be created and destroyed. A second is that, when we try to make quantum theory consistent with special relativity, we encounter diculties (discussed in Chapter 7) that can be resolved only in this more general setting. The nal reason is that, even for systems of non-relativistic particles, the mathematics rapidly becomes intractable as the number of particles increases. A useful device for dealing with large systems is, roughly speaking, to imagine adding an extra particle, which serves as a theoretical probe of the state of the system. To put the matter another way, the method of second quantization developed in this chapter provides a means of dealing with the entire system by considering only a few particles at a time.