ABSTRACT

Accurate modeling and efficient simulation, in support of greatly reduced development cycle time and cost, are well established techniques in the miniaturized world of integrated circuits (ICs). Simulation accuracies of 5% or less for parameters of interest are achieved fairly regularly [1], although even much less accurate simulations (e.g., 25-30%) can still be used to obtain valuable information [2]. In the IC world, simulation can be used to predict the performance of a design, to analyze an already existing component, or to support automated synthesis of a design. Eventually, MEMS simulation environments should also be capable of these three modes of operation. The MEMS developer is, of course, most interested in quick access to particular techniques and tools to support the system currently under development. In the long run, however, consistently achieving acceptably accurate MEMS simulations will depend both on the ability of the CAD (computer-aided design) community to develop robust, efficient, user-friendly tools which will be widely available both to cutting-edge researchers and to production engineers and on the existence of readily accessible standardized processes. In this chapter we focus on

Carla Purdy University of Cincinnati

fundamental approaches which will eventually lead to successful MEMS simulations becoming routine. We also survey available tools which a MEMS developer can use to achieve good simulation results. Many of these tools build MEMS development systems on platforms already in existence for other technologies, thus leveraging the extensive resources which have gone into previous development and avoiding “reinventing the wheel.”