ABSTRACT

Electromagnetic-based MEMS are widely used in various sensing and actuation applications. For these MEMS, rotational and translational motion microdevices are needed to be devised, designed, and controlled. We introduce the classifier paradigm to perform the structural synthesis of MEMS upon electromagnetic features. As motion microdevices are devised, the following issues are emphasized: modeling, analysis, simulation, control, optimization, and validation. Innovative results are researched and studied applying the classifier, structural synthesis, design, analysis, and optimization concepts developed. The need for innovative integrated methods to perform the comprehensive analysis, high-fidelity modeling, and design of MEMS has facilitated theoretical developments within the overall spectrum of engineering and science. This chapter provides one with viable tools to perform structural synthesis, modeling, analysis, optimization, and control of MEMS.