ABSTRACT

Graphene (i.e., a single layer of graphite) and carbon nanotubes (CNTs; i.e., graphene rolled into a cylinder) are excellent candidate materials for advanced applications because of their unique electrical, optical, and mechanical properties combined with a high surface area. The successful development of graphene-/CNT-based technology depends on large-scale availability of the high-quality, reproducible, and uniformly ordered material. One of the most versatile methods to produce vertically, self-aligned CNTs and epitaxial graphene is the vacuum annealing of silicon carbide single crystals [1,2]. This is a very versatile method because carbon is supplied from the carbide lattice as known from the synthesis of carbide-derived carbons (CDCs, see Figure 4.1) and, as no catalysts or secondary phases are utilized; the produced graphene and CNTs exhibit extremely high purity. However, to increase the grain/domain size and quality of these carbon nanostructures, further control of the process is needed.