Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Chapter

      Gaussian process models
      loading

      Chapter

      Gaussian process models

      DOI link for Gaussian process models

      Gaussian process models book

      Gaussian process models

      DOI link for Gaussian process models

      Gaussian process models book

      ByAndrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin
      BookBayesian Data Analysis

      Click here to navigate to parent product.

      Edition 3rd Edition
      First Published 2013
      Imprint Chapman and Hall/CRC
      Pages 18
      eBook ISBN 9780429113079
      Share
      Share

      ABSTRACT

      In Chapter 20, we considered basis function methods such as splines and kernel regressions, which typically require choice of a somewhat arbitrary set of knots. One can prespecify a grid of many knots and then use variable selection and shrinkage to effectively discard the knots that are not needed, but there may nonetheless be some sensitivity to the initial grid. A high-dimensional grid leads to a heavy computational burden, while a low-dimensional grid may not be sufficiently flexible. Another possibility, which has some distinct computational and theoretical advantages, is to set up a prior distribution for the regression function using a Gaussian process, a flexible class of models for which any finite-dimensional marginal distribution is Gaussian, and which can be viewed as a potentially infinite-dimensional generalization of Gaussian distribution.

      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited