Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Chapter

      - Basics of point-referenced data models
      loading

      Chapter

      - Basics of point-referenced data models

      DOI link for - Basics of point-referenced data models

      - Basics of point-referenced data models book

      - Basics of point-referenced data models

      DOI link for - Basics of point-referenced data models

      - Basics of point-referenced data models book

      BySudipto Banerjee, Bradley P. Carlin, Alan E. Gelfand
      BookHierarchical Modeling and Analysis for Spatial Data

      Click here to navigate to parent product.

      Edition 2nd Edition
      First Published 2014
      Imprint Chapman and Hall/CRC
      Pages 30
      eBook ISBN 9780429137174
      Share
      Share

      ABSTRACT

      In this chapter we present the essential elements of spatial models and classical analysis for point-referenced data. As mentioned in Chapter 1, the fundamental concept underlying the theory is a stochastic process {Y (s) : s ∈ D}, where D is a fixed subset of r-dimensional Euclidean space. Note that such stochastic processes have a rich presence in the time series literature, where r = 1. In the spatial context, usually we encounter r to be 2 (say, northings and eastings) or 3 (e.g., northings, eastings, and altitude above sea level). For situations where r > 1, the process is often referred to as a spatial process. For example, Y (s) may represent the level of a pollutant at site s. While it is conceptually sensible to assume the existence of a pollutant level at all possible sites in the domain, in practice the data will be a partial realization of that spatial process. That is, it will consist of measurements at a finite set of locations, say {s1, . . . , sn}, where there are monitoring stations. The problem facing the statistician is inference about the spatial process Y (s) and prediction at new locations, based upon this partial realization. The remarkable feature of the models we employ here is that, despite only seeing the process, equivalently, the spatial surface at a finite set of locations, we can infer about the surface at an uncountable number of locations. The reason is that we specify association through structured dependence which enables this broad interpolation.

      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited