ABSTRACT

U u V v W w

p q r

=

+

+

+

Δ

Δ

Δ

, ⎥

=

=

+

+

+

Δ

Δ

Δ

Δ

Δ

Δ

p q r

, φ θ

ψ

φ φ θ θ

ψ ψ

(5.1)

where Ue, Ve and We represent the steady trimmed velocities of the aircraft and the steady-state body axis angular velocities are each assumed to be equal to 0. They are related to the trimmed angle of attack and the trimmed sideslip angle by the relations

W U V

V U= +

= ⎛

1and (5.2)

Hence,

V U W U V Ue e e e e e e e e e= ( ) = + ( ) = + ( )( ) ( )tan tan tan tan .β α β αand 2 2 21

(5.3)

Hence, the linearised equations of motion are

m u qW rV

m v rU pW

m w pV qU

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

+ −( ) + −( ) + −( )

= −( ) + ( ) −( ) + −( ) ⎡

F F T F F T TNB NBe BW e e AS ASe BI BIemgα β, 0 0 1⎢

(5.4)

and

I I I

I I

p q r

0 0 0

=

Δ

Δ

Δ

M B NBe BW e e AS ASe−( ) + ( ) −( )M T M Mα β, . (5.5)

Further, the gravitational force perturbation vector is

e e e eT T−( ) ⎡

0 0 1

0 0 0

cos cos sin

θ φ θ φ θcos sin

− −

⎥sin cosφ θ φ θ

φ θ ψe e e ecos sin

. 0

Δ

Δ

Δ

(5.6)

In addition, we have the relations

Δ

Δ

Δ

φ θ ψ

φ θ φ θ φ φ

= −

1 0

sin tan cos tan sin

sin

p q rcos cos cos

. 0

Δ

Δ

Δ

(5.7)

Finally, the aforementioned equations must be complemented by perturbation equations for the vehicle position:

d dt

x y z

U u V v W w

Δ

Δ

Δ

Δ Δ Δ

Δ

Δ

Δ

= + + +( ) +

+

+

T ψ ψ θ θ φ φ, , ⎣

− ( ) ⎡

= ( )

T

T

U V W

u v

ψ θ φ

ψ θ φ

, ,

, , Δ

Δ

Δ

Δ

w

U V W

+ ( ) ⎡

T ψ θ φ, , ,

(5.8)

where

TIB ψ θ φ ψ ψ ψ ψ

θ θ , ,

cos sin cos

cos

si ( ) =

− ⎡

sin sin0 0

0 0 1

0 0 1 0 n cos

cos sin cos

, θ θ

φ φ φ φ0

1 0 0 0 0

sin

(5.9)

Δ Δ Δ ΔT T TIB e e e IB e e e IB e e eψ θ φ ψ ψ θ θ φ φ ψ θ φ, , , , , , ,( ) = + + +( ) − ( ) (5.10)

and Δ Δ Δu v w T ⎡

are the components of the aircraft perturbation velocity vector in the body axes.