ABSTRACT

In this chapter, the applications of scanning electrochemical microscopy (SECM) to the study of nanopores, nanocarbons, and nanoparticles are discussed. Electrochemistry of these nanosystems is an important topic and is treated thoroughly in Chapters 3, 9, and 11. Moreover, the fundamentals and applications of SECM are summarized in many reviews1,2 and a couple of comprehensive monographs.3,4 By contrast, this chapter is uniquely and timely devoted to the recent evolution of SECM as a powerful electrochemical method to quantitatively characterize the (electro)chemical reactivity of these nanosystems. In the late 1980s,5-7 Bard and coworkers invented SECM as the unique scanning probe microscopy technique by employing an ultramicroelectrode (UME) as a probe to quantitatively image and measure dynamic (electro)chemical processes at and near the interfaces. This invention was followed quickly by the establishment, wide acceptance, and commercialization of SECM by the late 1990s to nd a wide range of applications from electrochemistry to various

18.1 Introduction .......................................................................................................................... 621 18.2 Nanopores ............................................................................................................................. 622

18.2.1 Nuclear Pore Complex .............................................................................................. 622 18.2.2 Porous Nanocrystalline Silicon Membrane .............................................................. 626

18.3 Nanocarbons ......................................................................................................................... 627 18.3.1 Individual Carbon Nanotube .................................................................................... 628 18.3.2 Carbon Nanotube Network ....................................................................................... 629 18.3.3 Graphene ................................................................................................................... 631

18.4 Nanoparticles ........................................................................................................................ 634 18.4.1 Conductivity and Electroactivity .............................................................................. 634 18.4.2 Electrocatalysis ......................................................................................................... 637 18.4.3 Photocatalysis ........................................................................................................... 639 18.4.4 Deposition ................................................................................................................. 641

18.5 Nanocomposites .................................................................................................................... 643 18.5.1 Composite Nanomaterials ......................................................................................... 643 18.5.2 Biological Nanocomposites ......................................................................................645