ABSTRACT

One of the main tasks in making nanocomposites is building the dependence of the structure and shape of the nanoelements forming the basis for the composite of their sizes. This is because with an increase or a decrease in the specific size of nanoelements, their physical-mechanical properties, such as the coefficient of elasticity, strength, deformation parameter, etc., vary by over one order. The calculations show that this is primarily due to a significant rearrangement of the atomic structure and the shape of the nanoelement. The investigation of the above parameters of the nanoelements is technically complicated and laborious because of their small sizes. When the characteristics of powder nanocomposites are calculated, it is also very important to take into account the interaction of the nanoelements since the changes in their original shapes and sizes in the interaction process and during the formation of the nanocomposite can lead to a significant change in its properties and a cardinal structural rearrangement. In addition, the studies show the appearance of the processes of the ordering and self-assembling leading to a more organized form of a nanosystem. The above phenomena play an important role in nanotechnological processes. They allow nanotechnologies to be developed for the formation of nanostructures by the self-assembling method (which is based on self-organizing processes) and building up complex spatial nanostructures consisting of different nanoelements.