ABSTRACT

B B Bι = + (6)

0.139 0.5 0.00020813 330 3.5

R nm a c d

δ= = = = =

stretch angleV V V= + (7)

( ){ }201 exp( ) 1stretch eV D r rβ = − − − −  (8) 2 4

0 0 1 ( ) 1 ( ) 2angle sertic

V k kθ θ θ θ θ = − + −  (9)

1.421.10 9.10

1.8.10 120

0.9.10 0.754

r mD Nm m

Nmk k rad radθ

= =

= = °

= =

V VF r M r

θ θ

∂ ∂ = =∂ ∂ (10)

1 0 0212 3 2( ) ( )cos ijk ij

EA V Vh EI rθ

∂ ∂ = = ∂ ∂ (11)

: : : :T L E H K M H E S K= + = + (12)

1 1 2 21 2, ,2 2 2 2 h h h hδ δ δ δ

α α γ γ γ− +− < < − < < < < (13)

, . 2

F h h

α αδγ δ δ δ ± ±  

A h

αξ δ=

A h

αξ δ=

z γ δ= (17b)

31 0

h Z

β βς ∂ ∂

+ =∂ ∂ (18)

3 3 1 0µ µi in b n b atz zh

± ± ±+ = = (19)

i ib b h z

β βς ∂ ∂

+ =∂ ∂ (20)

3 3 1 0µ µi in b n b atz zh

± ± ±+ = = (21)

ij ijn ijn ijlm U Ub c c c

h zββ βς ∂ ∂

= + +∂ ∂ (22)

ij ijn ijn ijlm V Vb c c zc

h zββ βς ∂ ∂

= + + ∂ ∂ (23)

  (24)

1 ( )1 16

C zb E B

v

γ γ

= = +

+ ∑ (27)

B cos sin C cos sin cos sinϕ ϕ ϕ ϕ ϕ ϕ= = + − (30)

1112 2211 2 2 1112 2211 2 2j j j j j j j jB B cos sin C C cos sinϕ ϕ ϕ ϕ= = = = − (31)

B B cos sin C C cos sin cos sinϕ ϕ ϕ ϕ ϕ ϕ= = = = − (32)

B B cos sin C C cos sin cos sinϕ ϕ ϕ ϕ ϕ ϕ= = = = − (33)

( )211 11 2231 16 3 EN piδ ε ε= + (34)

( )222 11 2231 16 3 EN piδ ε ε= + (35)

12 121 16 3 EN piδ ε= (36)

1 768 EM v k vk v l

piδ  = + + + (37)

1 768 EM vk v k v l

piδ  = + + + (38)

1 768 EM ( v )k v l

piδ= + +

(39)

12 64 ( ) ( )LJV r r

σ σ ε

  = −   (44)

, ,r EA EI GJk k k L L Lθ ∅

= = = (48)

( ) 12 64 12( ) 6( )LJ dV rF dr r r r

ε σ σ  = = − +   (49)

kd k

θ = (50)

= (51)

3 1 0 1 3 0

16 3 0 0 1

N EN l

N

ε piδ ε

ε

         =             (52)

3 1 0 1 16 3 1 3 0 0

0 0 1 0

N

E

ε

ε δ pi ε

−           =              

(53)

6 3 / ENE

l σ pi δ ε ε

δ   = = =    (54)

6 3 / ENE

l σ pi δ ε ε

δ   = = =    (55)

2 32 3 /N EG

l τ pi δ ε ε

δ   = = =    (56)

6 3SWCNT EE l

pi δ  =    (57)

6 25.488 10 ; 0.147 ; 0/ .142N nmE nm L nmδ−= × = = (58)

ESWCNT = 1.71 TPa (59a)

The corresponding shear modulus can be calculated using Eq. (58), and is GSWCNT = 0.32 TPa (59b)

/ /NT

P AE L L

σ

ε = =

∆ (60)

TLG J

= (61)

0 ( ) ( )2 2NT NT t tA R Rpi  = + − −   (62a)

0 ( ) ( )2 2 2NT NT t tJ R Rpi  = + − −   (62b)

( ) ( )2 20 , ,NT out NT inA R t R tpi  = + − −   (63a) ( ) ( )4 40 , ,2 NT out NT inJ R t R t

pi   = + − −   (63b)

0 ,r w vdwU U U U U U∅= + + + +∑ ∑ ∑ ∑ ∑ (64) where Ur is for a bond stretch interaction, Uθ for a bond angle bending, Uϕ for a dihedral angle torsion, U

2 20 1 1( ) ( ) , 2 2r r r

U k r r k r= − = ∆ (65)

2 20 1 1( ) ( ) , 2 2

U k kθ θ θθ θ θ= − = ∆ (66)

21 ( ) ,

2t w r U U U k∅= + = ∆∅ (67)

1 1 1 , 2 2 2

A N N L EAU dL L EA EA L

= = = ∆∫ (68) where ΔL is the axial stretching deformation. The strain energy of a uniform beam under pure bending moment M (Fig. 3.14b) is

1 2 1 2 , 2 2

M M EI EIU dL EI L L

α α= = =∫ (69) Where α denotes the rotational angle at the ends of the beam. The strain energy of a uniform beam under pure torsion T (Fig. 3.14c) is

1 1 1 , 2 2 2

T T T L GJU dL GJ GJ L

β= = = ∆∫ (70) where Δβ is the relative rotation between the ends of the beam.