ABSTRACT

Nanomaterials have attracted much attention over the last decade owing to their very different properties to those of bulk equivalents such as a large surface-to-volume ratio, the size-dependent optical, physical, and magnetic properties.1-5 A number of solution methods have been developed for the synthesis of metal and metal oxide nanoparticles,2,3 but few solid-state methods have been informed.6 The application of nanostructured materials to electronic solid-state devices or to high-temperature technology requires, however, adequate solid-state methods for obtaining nanostructured materials.7-11 Recent studies reported that the evaporation of solvent to obtain Au nanoparticles in solid state, for an adequate incorporation to a solid-state device-for instance-results in 3D Au superstructures with properties different from those of Au nanostructures.12 Then, the development of new

solid-state methods to prepare metallic nanostructured materials is a constant challenge. We have previously informed a new solid-state method to synthesize metallic nanostructure nanomaterials from the pyrolysis of metallic and organometallic derivatives of poly-and oligophosphazene under air and at 800°C.13-17 Nanostructured metals of the types M, MxOy, and MxPyOz are obtained, depending on the nature of the metal. Another method when the respective metals or organometallic derivative is not possible to prepare use state mixtures MLn/[NP(O2C12H8)]3.18-20 In this case, pure phase of metallic nanoparticles is obtained. However, in several of these systems, the M or MxOy phase is accompanied by a phosphate phase. These methods have been discussed in detail in several papers13-20 and book chapters.21-23 In this chapter, we will discuss a novel preparation method of metallic and metal oxide nanostructured methods starting

Introduction ............................................................................................................................................................................... 504 A General Survey of Methods for the Preparation of Metal Oxide Nanoparticles ................................................................... 505

The Korgel’s Method............................................................................................................................................................ 505 The Molecular Complex Decomposition Method ................................................................................................................ 505

Our Present Solid-State Approximation .................................................................................................................................... 505 Transition Metal (First Row) ................................................................................................................................................ 506

Titanium .......................................................................................................................................................................... 506 Vanadium ......................................................................................................................................................................... 507 Chromium ........................................................................................................................................................................ 508 Manganese ....................................................................................................................................................................... 508 Iron .................................................................................................................................................................................. 508 Cobalt .............................................................................................................................................................................. 508 Nickel .............................................................................................................................................................................. 509

Noble Metals ........................................................................................................................................................................ 511 Gold ................................................................................................................................................................................. 511 Silver ............................................................................................................................................................................... 511 Platinum .......................................................................................................................................................................... 512 Palladium ......................................................................................................................................................................... 512

Representative Metals .......................................................................................................................................................... 513 Rare Metals .......................................................................................................................................................................... 515 Probable Mechanism ............................................................................................................................................................ 516

Conclusions and Future Prospect .............................................................................................................................................. 516 Acknowledgments ..................................................................................................................................................................... 521 References ................................................................................................................................................................................. 521

from the macromolecular precursor chitosan · MXn and PS-co-4-PVP · MXn and subsequent solid-state pyrolysis at 800°C under air (see Figure 288). In this chapter, we will present a brief discussion of some recent solid-state methods to prepare metallic and metal oxide nanoparticles.