ABSTRACT

Shungite quantum dots are associated with nanosize fragments of reduced graphene oxide similarly to synthetic graphene quantum dots thus forming a common class of graphene quantum dots (GQDs). Colloidal dispersions of powdered shungite in water, carbon tetrachloride, and toluene form the ground for the GQD photonic peculiarities manifestation. Morphological study shows a steady trend of GQDs to form fractals and a drastic change in the colloids fractal structure caused by solvent was reliably established. Spectral study reveals a dual character of emitting centers: individual GQDs are responsible for the spectra position while the fractal structure of GQD colloids provides high broadening of the spectra due to structural inhomogeneity of the colloidal dispersions and a peculiar dependence on excitation wavelength. For the rst time, photoluminescence spectra of individual GQDs were observed in frozen toluene dispersions which pave the way for a theoretical treatment of GQD photonics.