ABSTRACT

Today, we are in an era of smart devices as embedded technology is involved in various applications that we use in our daily life by the virtue of microprocessors and microcontrollers. The system might consist of only electronic or electromechanical devices. Since this work is concerned with the application of these technologies, we mainly focus our discussion on several microcontrollers and the embedded system development environments. An embedded system might be a real-time system that performs mission-critical tasks. Most embedded systems are based on sensors and output actuators. A sensor typically examines the behavior of the outside world and sends the information to an embedded microcontroller system. It is typically either digital or analog in nature. An analog sensor sends a voltage level corresponding to the sensed data value, whereas a digital sensor sends a digital pulse-width modulation (PWM) or pulse-position modulation (PPM) pulse corresponding to the sensed value. An actuator can be considered as an output device that responds to the behavior sensed by the sensor device. It may typically be a manipulator, a robotic arm, or a relay-based device that performs a realtime task based on the given sensor data.