ABSTRACT

This book provides a guide to those techniques and procedures which enable the microstructure of materials to be completely classified and characterised. As a consequence, it is appropriate to those studying and working in the interrelated fields of metallurgy, materials science, ceramics, polymer science and solid state physics. Material is the generic term used to describe physical matter in the solid state which occurs naturally or is manufactured to achieve particular physical properties and characteristics. Materials have been classified in various ways, but perhaps the simplest and most complete classification divides into two categories (table 1.1) (Bever (1986)), one based upon the nature of the material and the other upon the application. Such a classification is flexible, accommodating existing materials and perceived future materials. It is not appropriate to address each of the materials set out under the heading of nature in table 1.1 in detail, but rather to consider briefly how their atomic and molecular structure influences the mechanical and physical properties associated with some of the more important of these. It is to this nanoscale level that microstructure has to be resolved ultimately, although there are essentially many lower-resolution techniques covering the meso and microscale that assist this understanding.