ABSTRACT

The radio frequency spectrum Radio frequency signals are generally understood to occupy a frequency range that extends from a few tens of kilohertz (kHz) to several hundred Gigahertz (GHz). The lowest part of the radio

frequency range that is of practical use (below 30 kHz) is only suitable for narrow-band communication. At this frequency, signals propagate as ground waves (following the curvature of the earth) over very long distances. At the other extreme, the highest frequency range that is of practical importance extends above 30GHz. At these microwave frequencies, considerable bandwidths are available (sufficient to transmit many television channels using point-to-point links or to permit very high definition radar systems) and signals tend to propagate strictly along line-of-sight paths. At other frequencies signals may propagate by various means including reflection from ionized layers in the ionosphere. At frequencies between 3 MHz and 30 MHz ionospheric propagation regularly permits intercontinental broadcasting and communications. For convenience, the radio frequency spectrum is divided into a number of bands, each spanning a decade of frequency. The use to which each frequency range is put depends upon a number of factors, paramount amongst which is the propagation characteristics within the band concerned. Other factors that need to be taken into account include the efficiency of practical aerial systems in the range concerned and the bandwidth available. It is also worth noting that, although it may appear from Fig. 13.1 that a great deal of the radio frequency spectrum is not used, it should be stressed that competition for frequency space is fierce. Frequency allocations are, therefore, ratified by international agreement and the various user services carefully safeguard their own areas of the spectrum.