ABSTRACT

Problem 5. Solve the equation: 4 sin(x − 20◦) = 5 cos x for values of x between 0◦ and 90◦

4 sin (x − 20◦) = 4[sin x cos 20◦ − cos x sin 20◦] from the formula for sin (A − B)

= 4[sin x(0.9397) − cos x(0.3420)] = 3.7588 sin x − 1.3680 cos x

Since 4 sin(x − 20◦) = 5 cos x then 3.7588 sin x − 1.3680 cos x = 5 cos x Rearranging gives:

3.7588 sin x = 5 cos x + 1.3680 cos x = 6.3680 cos x

and sin x cos x

= 6.3680 3.7588

= 1.6942

i.e. tan x = 1.6942, and x = tan−1 1.6942 = 59.449◦ or 59◦27′

[Check: LHS = 4 sin(59.449◦ − 20◦) = 4 sin 39.449◦ = 2.542

RHS = 5 cos x = 5 cos 59.449◦ = 2.542]

Now try the following exercise

Exercise 104 Further problems on compound angle formulae

1. Reduce the following to the sine of one angle: (a) sin 37◦ cos 21◦ + cos 37◦ sin 21◦ (b) sin 7t cos 3t − cos 7t sin 3t

[(a) sin 58◦ (b) sin 4t] 2. Reduce the following to the cosine of one

angle: (a) cos 71◦ cos 33◦ − sin 71◦ sin 33◦

(b) cos π 3

cos π

4 + sin π

3 sin

π

4⎡ ⎣ (a) cos 104

◦ ≡ −cos76◦ (b) cos π

⎤ ⎦

3. Show that: (a) sin

( x + π

) + sin

( x + 2π

) = √

3 cos x

(b) −sin (

3π 2

−φ )

= cos φ 4. Prove that:

(a) sin ( θ + π

) − sin

( θ − 3π

) =

√ 2(sin θ + cos θ)

(b) cos (270 ◦ + θ)

cos (360◦ − θ) = tan θ 5. Given cos A = 0.42 and sin B = 0.73 evaluate

(a) sin(A − B), (b) cos(A − B), (c) tan(A + B), correct to 4 decimal places.