ABSTRACT

Since 4sin(x − 20◦) = 5cos x then 3.7588sinx − 1.3680cosx = 5cosx Rearranging gives:

3.7588sinx = 5cosx + 1.3680cosx = 6.3680cosx

and sin x cos x

= 6.3680 3.7588

= 1.6942

i.e. tan x =1.6942, and x = tan−1 1.6942=59.449◦ or 59◦27′

[Check: LHS = 4sin(59.449◦ − 20◦) = 4sin39.449◦ = 2.542

RHS = 5cosx = 5cos59.449◦ = 2.542]

Now try the following exercise

Exercise 72 Further problems on compound angle formulae

1. Reduce the following to the sine of one angle:

(a) sin37◦ cos21◦ + cos37◦ sin21◦ (b) sin7t cos3t − cos 7t sin3t

[(a) sin58◦ (b) sin4t ]

2. Reduce the following to the cosine of one angle:

(a) cos71◦ cos33◦ − sin71◦ sin33◦

(b) cos π 3

cos π

4 + sin π

3 sin

π

4⎡ ⎣ (a) cos104◦ ≡ −cos76◦

(b)cos π 12

⎤ ⎦

3. (a) sin

( x + π

+ sin

( x + 2π

= √3cosx

and

(b) −sin (

3π 2

−φ )

= cosφ

4. Prove that: (a) sin

( θ + π

) − sin

( θ − 3π

) =√2(sinθ + cosθ)

(b) cos(270 ◦ +θ)

cos(360◦ −θ) = tanθ

5. Given cos A=0.42 and sin B=0.73 evaluate (a) sin(A− B), (b) cos(A− B), (c) tan(A+B), correct to 4 decimal places.