ABSTRACT

Problem 5. Solve the equation: 4 sin(x−20◦)= 5cos x for values of x between 0◦ and 90◦

4sin(x− 20◦) = 4[sinxcos20◦ − cos xsin20◦] from the formula forsin(A−B)

= 4[sinx(0.9397)− cos x(0.3420)] = 3.7588sinx− 1.3680cosx

Since 4 sin(x−20◦)=5cosx then 3.7588 sin x−1.3680 cos x=5 cos x Rearranging gives:

3.7588sinx = 5cos x + 1.3680cosx = 6.3680cosx

and sin x cos x

= 6.3680 3.7588

=1.6942

i.e. tan x=1.6942, and x= tan−1 1.6942=59.449◦ or 59◦27′

[Check:LHS = 4sin(59.449◦−20◦) = 4sin39.449◦ = 2.542

RHS = 5cosx = 5cos59.449◦ = 2.542]

Now try the following exercise

Exercise 107 Further problems on compound angle formulae

1. Reduce the following to the sine of one angle: (a) sin37◦ cos21◦+ cos37◦ sin21◦ (b) sin7t cos3t− cos7t sin3t

[(a) sin58◦ (b) sin4t ] 2. Reduce the following to the cosine of one

angle: (a) cos71◦ cos33◦− sin71◦ sin33◦

(b) cos 3

cos

4 + sin

3 sin

4⎡ ⎣(a) cos104◦ ≡ −cos76◦

(b) cos π

⎤ ⎦

3. Show that: (a) sin

( x+ π

) + sin

( x+ 2π

) = √3cos x

(b) −sin (

3π 2

−φ )

= cosφ

4. Prove that:

(a) sin ( θ + π

) − sin

( θ − 3π

) =

√ 2(sin θ + cosθ)

(b) cos(270 ◦ +θ)

cos(360◦ −θ) = tanθ

5. Given cos A=0.42 and sinB=0.73 evaluate (a) sin(A− B), (b) cos(A− B), (c) tan(A+ B), correct to 4 decimal places.