ABSTRACT

It might well be asked what relativity has to do with theology. For our purpose it is sufficient that many people think, rightly or wrongly, that there is a connection. It is certainly the case that arguments about the timelessness of God invoke relativistic considerations. More generally, relativity provides a more sophisticated and indeed a more correct way of talking about space and time, so if theology involves spatio-temporal concepts it is desirable to consider them relativistically. This theory, according to a perceptive writer, has

To this list may be added time dilation, namely that moving clocks appear to run slow. Many of these implications of the theory, well confirmed by experiment, seemed contrary to common sense, and engendered the feeling that familiar and traditional landmarks had melted away, that physics had become strange and mysterious. It is not surprising that in the early years it encountered much opposition (Goldberg, 1984). It is essential to realize that relativity theory is the fruit of a rigorous quest for objective knowledge, and if anyone says that it does not make sense, that means that he derives his views from superficial appearances and lacks the mathematical tools that are essential for understanding reality (Angel, 1980, p. 80). The word ‘relativity’ was taken by many to mean the denial of any absolutes,

and the equivalence of mass and energy seemed to mark the end of nineteenthcentury materialism. Many writers drew out the implications of such beliefs for moral and sociological questions. Properly understood, relativity is a much simpler and more natural way of

dealing with space and time. To see this simplicity we have first to remove some ingrained prejudices, and this is why it may at first seem difficult. Additional and quite unnecessary difficulties are often introduced by failing to define relativistic quantities in a consistent way. It is then seen that relativity is principally concerned with establishing the objective and invariant features of

the world, that its apparently paradoxical aspects are readily understandable and that absolute space and time remain at the basis of physics. The fundamental principle underlying the theory of relativity is that the laws

of nature always have the same form for all observers. This follows from our belief that there are laws that describe, precisely and mathematically, the connections between causes and effects. This invariance of the laws of nature is sometimes called the principle of covariance, or the principle of relativity. It says that the laws of nature are completely objective, and do not depend on who is looking at the phenomena or from what vantage point. This principle is also implicit in classical physics, but its radical implications were not sufficiently appreciated. This is yet another example of a very profound truth, that apparently simple

and obvious statements have the most far-reaching and detailed consequences. Our systems of thought are locked together far more tightly than we usually suppose. As we shall see, the relativistic transformations can be derived in many ways, starting from many different beliefs. If one wants to deny their truth, this implies that one must also deny a whole range of other beliefs that one never thought to question. It is thus not surprising that the most profound results in science are often reached by asking the simplest questions. As he recalls in his autobiographical notes, Einstein began by asking himself

a very simple question: what would a light wave look like to someone who is travelling alongside it? It was known that a light wave is an electromagnetic wave that is described by Maxwell’s equations, so Einstein looked for a solution of these equations that describes a stationary light wave, and found that there is none. However we describe a light wave, it is always moving with the speed of light. This led him to study very carefully the transformation equations that relate

the spatio-temporal coordinates of events in one frame of reference to those in another frame moving with constant velocity with respect to the first. It had always been assumed to be obvious that these transformation equations are those due originally to Galileo. Furthermore, it was also considered obvious, according to the principle of relativity, that our description of phenomena should give the same result whichever reference frame we use. Einstein realized that Maxwell’s equations do not satisfy this condition; they are not invariant under the Galilean transformation. So he asked himself what the transformation would have to be to ensure that

the light wave looks the same to all observers, whatever their relative velocities. This was already known as the Lorentz transformation. He then asked what the consequences would be of assuming that the Lorentz transformation applied to all phenomena, not just to light waves, and found that this enabled him to explain many apparently anomalous results, such as the failure of Michelson and Morley to detect the motion of the earth through the aether. Similar studies were made by Poincare´.1