ABSTRACT

This chapter deals with the robot motion control problem, whose objective is accurate execution of a reference robot trajectory. This trajectory is executed by the robot end-effector in the operational space, i.e., in the space where the robot performs its motion tasks. The dimension of this space is not higher than six, as unique positioning and orientation of the end-effector require at most three Cartesian and three angular coordinates. A desired operational trajectory is realized by controlling the motions in the robot joints. The operational reference is mapped into the joint reference trajectory via the inverse kinematics mapping [1,2]. The joint reference is realized by the joint servo control loops. Better quality of motion control in the joint space contributes to higher motion performance in the operational space.