ABSTRACT

A reliable prediction of liquefaction-induced damage typically requires nonlinear deformation analyses with an advanced constitutive soil model calibrated to the site conditions. The calibration of constitutive models can be performed by relying primarily on a combination of commonly available properties and empirical or semi-empirical relationships, on laboratory tests on site-specific soils, on in-situ penetration tests, or a combination thereof. Chiaradonna et al. (2022) described a laboratory-based calibration approach of the PM4Sand constitutive model and evaluated the prediction accuracy against the response of a centrifuge experiment of a submerged slope. This paper addresses an alternate calibration approach in which the PM4Sand model is calibrated using centrifuge in-situ CPT data. The model performance for the resulting calibration is evaluated against the centrifuge experimental data and prior simulations from Chiaradonna et al. (2022). In this case, the CPT-based calibration resulted in more accurate estimations of the dynamic response and permanent displacements.