ABSTRACT

The growing demand of sustainable precast structures for multi-storey constructions is often driven by the optimisation of cross-sections and reinforcement volumes of the structural elements. The present paper describes a real building recently designed and assembled with the installation of crescent-moon hysteretic dampers in the beam-column joints, recently proposed and patented. The joint continuity allows for an optimisation of the lateral load resisting system, reducing the size of the columns with respect to the classical precast frame structural arrangement with hinged joints, whilst protecting columns and beams from the large actions deriving from the classical moment-resisting cast-in-situ or partially precast technological solutions. After the complete detailed design of the case study building employing the 3 solutions described above, the precast dissipative one being designed with dynamic non-linear analysis, the results of an environmental impact analysis are compared and discussed, confirming a reduced environmental impact for the dissipative solution, with respect to both precast with hinged beam-column joints and moment-resisting cast-in-situ alternatives.