ABSTRACT

Traditional engineering practice deals with the elastic solid and the viscous liquid as separate classes of materials. Engineers have been largely successful in the use of materials like motor oil, reinforced concrete, or steel in various applications based on design equations arising from this type of material classification. However, it has become increasingly obvious that elastic and viscous material responses to imposed stresses represent the two extremes of a broad spectrum of material behavior. The behavior of polymeric materials falls between these two extremes. As we said in Chapter 13, polymers exhibit viscoelastic behavior. The mechanical properties of solid polymers show marked sensitivity to time compared with traditional materials like metals and ceramics. Several examples illustrate this point. (1) The stress-strain properties of polymers are extremely rate dependent. For traditional materials, the stress-strain behavior is essentially independent of strain rate. (2) Under a constant load, the deformation of polymeric material increases with time (creep). (3) When a polymer is subjected to a constant deformation, the stress required to maintain this deformation decreases with increasing time (stress relaxation). (4) The strain resulting from a polymer subjected to a sinusoidal stress has an in-phase component and an out-of-phase component. The phase lag (angle) between the stress and strain is a measure of the internal friction, which in principle is the mechanical strain energy that is convertible to heat. Traditional materials, for example, metals close to their melting points, exhibit similar behavior. However, at normal temperatures, creep and stress relaxation phenomena in metals are insignificant and are usually neglected in design calculations. In choosing a polymer for a particular end-use situation, particularly structural applications, its time-dependent behavior must be taken into consideration if the polymer is to perform successfully.