ABSTRACT

Building simulation started to stand out as a separate discipline in the late 1970s. It has matured since then into a field that offers unique expertise, methods and tools for building performance evaluation. It draws its underlying theories from diverse disciplines, mainly from physics, mathematics, material science, biophysics, and behavioural and computational sciences. It builds on theories in these fields to model the physical behavior of as-designed, as-built, and as-operated facilities. At building scale, the theoretical challenges are inherent in the complex interplay of thousands of components, each with their own complex physical behavior and a multiplicity of interactions among them. The diversity of the interactions pose major modeling and computational challenges as they range from (bio)physical to human operated, from continuous to discrete, from symmetric to non-symmetric causality and from autonomous to controlled. Its ability to deal with the resulting complexity of scale and diversity of component interactions has gained building simulation a well-respected role in the prediction, assessment, and verification of building behavior. Specialized firms offer these services in any life cycle stage and to any stake holder.